SQLServer常用运维SQL整理

今天线上SQLServer数据库的CPU被打爆了,紧急情况下,分析了数据库阻塞、连接分布、最耗CPU的TOP10 SQL、查询SQL并行度配置、查询SQL 重编译的原因等等

整理了一些常用的SQL

1. 查询数据库阻塞

SELECT * FROM  sys.sysprocesses WHERE blocked<>0  

查询结果中,重点看Blocked这一列,先找出最多的SID,然后循环找出Root的阻塞根源SID

查询阻塞根源Session的SQL

DBCC Inputbuffer(sid)

2. 查询SQL连接分布

SELECT Hostname FROM  sys.sysprocesses WHERE hostname<>''

3. 查询最消耗CPU的SQL Top10

select top(10) st.text as Query, qs.total_worker_time, qs.execution_count from 
sys.dm_exec_query_stats as qs CROSS Apply sys.dm_exec_sql_text(qs.sql_handle) AS st
order by qs.total_worker_time desc

4. 查看SQLServer并行度

SELECT value_in_use  FROM sys.configurations WHERE name = 'max degree of parallelism'

并行度如果设置为1,To suppress parallel plan generation, set max degree of parallelism to 1

将阻止并行编译生成SQL执行计划,最大并行度设置为1

设置策略和具体设置方法,请参考:https://docs.microsoft.com/en-us/sql/database-engine/configure-windows/configure-the-max-degree-of-parallelism-server-configuration-option?view=sql-server-2017

USE DatabaseName ;  
GO   
EXEC sp_configure 'show advanced options', 1;  
GO  
RECONFIGURE WITH OVERRIDE;  
GO  
EXEC sp_configure 'max degree of parallelism', 16;  
GO  
RECONFIGURE WITH OVERRIDE;  
GO

  

5. 查询SQL Server Recompilation Reasons

select dxmv.name, dxmv.map_key,dxmv.map_value from 
sys.dm_xe_map_values as dxmv where dxmv.name='statement_recompile_cause' order by dxmv.map_key

6. 将SQL Trace文件存入一张表,做聚合分析(CPU、IO、执行时间等)

SELECT * INTO TabSQL
FROM fn_trace_gettable('C:\Users\***\Desktop\Trace\sql05trace20180606-业务.trc', default);
GO

对上述表数据进行聚合分析最耗时的SQL

select  top 100 	
	    replace(replace(replace(  substring(Textdata,1,6600) ,char(10),' '),char(13),' ') ,char(9),' ')  as '名称',
		--substring(Textdata,1,6600)  as old,
       count(*) as '数量',
       sum(duration/1000) as '总执行时间ms',
       avg(duration/1000) as '平均执行时间ms',
       avg(cpu) as '平均CPU时间ms',
       avg(reads) as '平均读次数',
       avg(writes) as '平均写次数', LoginName
from TabSQL   t
group by   replace(replace(replace(  substring(Textdata,1,6600) ,char(10),' '),char(13),' ') ,char(9),' ') , LoginName
order by sum(duration) desc 

最耗IO的SQL

select  TOP 100 replace(replace(replace(  substring(Textdata,1,6600) ,char(10),' '),char(13),' ') ,char(9),' ') as '名称' ,LoginName, 
       count(*) as '数量',
       sum(duration/1000) as '总执行时间ms',
       avg(duration/1000) as '平均执行时间ms',
       sum(cpu) as '总CPU时间ms',
       avg(cpu) as '平均CPU时间ms',
       sum(reads) as '总读次数',
       avg(reads) as '平均读次数',
       avg(writes) as '平均写次数'
from TabSQL
group by replace(replace(replace(  substring(Textdata,1,6600) ,char(10),' '),char(13),' ') ,char(9),' ')  ,LoginName 
order by  sum(reads) desc

最耗CPU的SQL

SELECT TOP 100 replace(replace(replace(  substring(Textdata,1,6600) ,char(10),' '),char(13),' ') ,char(9),' ')  as '名称',LoginName,
       count(*) as '数量',
       sum(duration/1000) as '总执行时间ms',
       avg(duration/1000) as '平均执行时间ms',
       sum(cpu) as '总CPU时间',
       avg(cpu) as '平均CPU时间',
       avg(reads) as '平均读次数',
       avg(writes) as '平均写次数'
from TabSQL
group by replace(replace(replace(  substring(Textdata,1,6600) ,char(10),' '),char(13),' ') ,char(9),' ')   ,LoginName
order by avg(cpu) desc

 

  

 

周国庆

2019/7/8

posted @ 2019-07-08 17:55 Eric zhou 阅读(...) 评论(...) 编辑 收藏
聚福彩票网 414| 747| 654| 120| 330| 816| 711| 639| 915| 147| 450| 102| 189| 249| 678| 726| 156| 822| 876| 990| 558| 732| 735| 594| 597| 225| 426| 942| 756| 300|